Comparison of Autografts and Biodegradable 3D-Printed Composite Scaffolds with Osteoconductive Properties for Tissue Regeneration in Bone Tuberculosis

نویسندگان

چکیده

Tuberculosis remains one of the major health problems worldwide. Besides lungs, tuberculosis affects other organs, including bones and joints. In case bone tuberculosis, current treatment protocols include necrectomy in combination with conventional anti-tuberculosis therapy, followed by reconstruction resulting defects. this study, we compared autografting implantation a biodegradable composite scaffold for bone-defect regeneration rabbit model. Porous three-dimensional materials were prepared 3D printing consisted poly(ε-caprolactone) filled nanocrystalline cellulose modified poly(glutamic acid). addition, mesenchymal stem cells adhered to surface scaffolds. The developed model was verified immunological subcutaneous test, real-time polymerase chain reaction, biochemical markers histomorphological study. Infected animals randomly divided into three groups, representing infection control two experimental groups subjected necrectomy, treatment, plastic surgery using autografts or 3D-composite lifetime observation analysis various at different time periods allowed comparison state between groups. Micro-computed tomography enabled evaluation osteogenesis, inflammation cellular changes respectively.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biodegradable Polymer-bioceramic Composite Scaffolds for Bone Tissue Engineering

Critical size bone defects due to trauma or disease are very difficult to repair via the natural growth of the host bone. Therefore, these defects must be filled with a bridging material (scaffold), which should also, in combination with relevant cells and signalling molecules, promote the regeneration of new bone tissue. In this context, bone regeneration is one of the most attractive areas in...

متن کامل

Biodegradable nanofibers-reinforced microfibrous composite scaffolds for bone tissue engineering.

Native bone extracellular matrix (ECM) is a complex hierarchical fibrous composite structure, resulting from the assembling of collagen fibrils at several length scales, ranging from the macro to the nanoscale. The combination of nanofibers within microfibers after conventional reinforcement methodologies seems to be a feasible solution to the rational design of highly functional synthetic ECM ...

متن کامل

3D Printed Scaffolds as a New Perspective for Bone Tissue Regeneration: Literature Review

Due to the high incidence of bone fractures in the population, it became necessary to produce scaffolds that are able to assist in tissue regeneration. It is necessary to find an appropriate balance between the mechanical and biological properties, in order to mimic the natural tissue, these properties are directly related to the architecture and their degree of porosity, as well as the size of...

متن کامل

Composite Scaffolds Containing Silk Fibroin, Gelatin, and Hydroxyapatite for Bone Tissue Regeneration and 3D Cell Culturing

Three-dimensional (3D) silk fibroin scaffolds were modified with one of the major bone tissue derivatives (nano-hydroxyapatite) and/or a collagen derivative (gelatin). Adhesion and proliferation of mouse embryonic fibroblasts (MEF) within the scaffold were increased after modification with either nano-hydroxyapatite or gelatin. However, a significant increase in MEF adhesion and proliferation w...

متن کامل

A Review on Commonly Used Scaffolds in Tissue Engineering for Bone Tissue Regeneration

Introduction: Bone is one of the tissues that have a true potential for regeneration. However, sometimes the bone defects are so outsized that there is no chance of bone self-repair and restoration or the damage is such that it is not possible to repair with medical or surgical interventions. In these situations, bone grafts are the treatment of choice, but due to several obstacles, including l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biomedicines

سال: 2023

ISSN: ['2227-9059']

DOI: https://doi.org/10.3390/biomedicines11082229